

DBW-8

Seat No.

B. Sc. (Sem. II) (CBCS) (W.E.F. 2019) Examination July - 2022

Mathematics: BSMT-02(A)

(Geometry, Calculus & Matrix Algebra) (New Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Numbers written to the right indicate full marks of the question.
- 1 (a) Answer the following questions briefly:

4

- (1) Write the equation of sphere in vector form.
- (2) Find the sphere for which (1, -1, 1) and (-1, 1, 1) are the extremities of a diameter.
- (3) Write the equation of cylinder whose axis is parallel to *y*-axis and radius *r*.
- (4) Define: Right circular cylinder.
- (b) Attempt any one:

2

- (1) Find the centre and radius of the sphere $x^2 + y^2 + z^2 2x + 6z 6 = 0$.
- (2) Write the equation of right circular cylinder with radius r and axis passing through origin.
- (c) Attempt any one:

3

- (1) Find the co-ordinates of points where the line $\frac{x-1}{2} = \frac{y-6}{3} = \frac{z-4}{4}$ intersects the sphere $x^2 + y^2 + z^2 = 10.$
- (2) Find equation of cylinder whose generator is parallel to $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ and enveloping curve is $x^2 + y^2 + z^2 = a^2$.
- (d) Attempt any one:

5

- (1) Find the equation of the tangent plane at any point (α, β, γ) of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0.$
- (2) Derive equation of a cylinder of which

generator remain parallel to the line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ and passing through guiding curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$; z = 0.

DBW-8]

1

[Contd...



- (1) Define homogeneous function of degree n in x and y.
- (2) Evaluate $\lim_{x\to 0} \left[\lim_{y\to 0} \frac{\tan(x+y)}{x+y} \right]$.
- (3) If $u = y^x$ then find $\frac{\partial u}{\partial y}$.
- (4) If $u = \log(x^2 + y^2)$ then find $\frac{\partial u}{\partial x}$.

(b) Attempt any one:

- (1) Discuss the existence of $\lim_{(x, y) \to (0, 0)} \frac{x^2 y^2}{x^2 + y^2}$ by deriving iterated limits.
- (2) If $f(x, y) = x \tan \frac{y}{x}$ then find $\frac{\partial f}{\partial x}$ at $(4, \pi)$.

3

- (1) If $z = \sin^{-1} \sqrt{\frac{x^3 + y^3}{x^2 + y^2}}$ then show that $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = \frac{1}{2} \tan z.$
- (2) If $u = \phi \left(x^2 + 2yz, y^2 + 2zx\right)$ then prove that

$$\left(y^2 - zx\right)\frac{\partial u}{\partial x} + \left(x^2 - yz\right)\frac{\partial u}{\partial y} + \left(z^2 - xy\right)\frac{\partial u}{\partial z} = 0.$$

5

- (1) State and prove "Euler's theorem" for homogeneous function of two variables.
- (2) If f(x, y) = 0 then obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

4

- (1) Define: Global maxima and minima.
- (2) Define: Extreme point.

(3) If
$$x = p \cos \theta$$
, $y = p \sin \theta$ then $\frac{\partial(x, y)}{\partial(p, \theta)} =$ _____.

(4)
$$\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = \underline{\hspace{1cm}}.$$

(b) Attempt any one:

- (1) If there 1% error in the measurement of half of major and minor axis of an ellipse then evaluate relative error in measure of its area.
- (2) For cylindrical co-ordinate $x = r \cos \theta$, $y = r \sin \theta$, z = z show that $J\left(\frac{x, y, z}{r \theta, z}\right) = r$.
- (c) Attempt any one:

3

- (1) If $f(x, y) = x^3 + xy + y^3$ then find the approximate value of f(1.01, 2.98).
- (2) If $u = x^2 2y$, v = x + y + z, w = x 2y + 3z then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 10x + 4$.
- (d) Attempt any one:

5

- (1) State and prove Taylor's theorem.
- (2) Find the greatest and smallest value of the function f(x, y) = xy takes on ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$.
- 4 (a) Answer the following questions briefly:

4

- (1) Define: Rectangular matrix.
- (2) Find trace of matrix $\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$.
- (3) Give an example of 3×3 symmetric matrix.
- (4) $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$ then find $A \cdot B$.
- (b) Attempt any one:

2

- (1) Prove that $A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$ is Nilpotent of index 2.
- (2) Prove that $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is Idempotent.

(c) Attempt any one:

- 3
- (1) If AB = A and BA = B then prove that A and B are Idempotent.
- (2) Prove that A is involutory iff (I + A)(I A) = 0.
- (d) Attempt any one:

- 5
- (1) Prove that every square matrix can be expressed uniquely as the sum of symmetric matrix and skew symmetric matrix.
- (2) If $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ then find A^{-1} .
- 5 (a) Answer the following questions briefly:

4

- (1) Define: Characteristic equation.
- (2) Define: Eigen values.
- (3) Find the Eigen values of $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.
- (4) Find the characteristics equation of $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$.
- (b) Attempt any one:

- 2
- (1) Show that the matrices A and A^T have the same Eigen values.
- (2) Prove that O is a characteristics root of a matrix iff the matrix is singular.
- (c) Attempt any one:

- 3
- (1) Prove that matrix $A \lambda I$ is singular iff λ is a Eigen value of matrix A.
- (2) Show that the equation x + y + z = -3, 3x + y 2z = -2, 2x + 4y + 7z = 7 are not constitent.
- (d) Attempt any one:

- 5
- (1) State and prove Cayley-Hamilton theorem.
- (2) Verify Cayley-Hamilton theorem for matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and hence obtain A^{-1} .